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Through a new method, the following model is solved exactly in the framework 
of classical equilibrium statistical mechanics of two-dimensional Coulomb 
systems, for the special value F = 2 of the coupling constant: the mobile charges 
of a one-component plasma are attracted by a line of equidistant sticky 
adsorption sites embedded in a background, the density of which varies in the 
direction orthogonal to the line. First the general expressions are given for the 
densities and correlation functions of nonadsorbed and adsorbed particles. Then 
these results are used to investigate two models of electrodes with localized 
adsorption: the externally charged hard wall and the impermeable polarized 
membrane. In each case the influence of the adsorption upon macroscopic 
features is studied: the potential drop across the interface, the contact theorem, 
and the Lippmann equation, which involves the surface free energy. 

KEY WORDS: One-component plasma; localized adsorption; solvable 
model; impermeable membrane; potential drop; surface free energy. 

1. I N T R O D U C T I O N  

Using the framework of classical equi l ibr ium statistical mechanics,  I exactly 
solve models of polarized interfaces between two-dimensional  charged 
systems when the interface bears equidis tant  adsorpt ion  sites. These inter- 
faces are in tended to mimic the electrical double  layer which appears at the 

metal-electrolyte  interface of an electrode; the adsorbed ions are in 
dynamical  equi l ibr ium with the electrolyte and the dis t r ibut ion of the 

adsorpt ion  sites reflects the periodic structure of the metallic adsorbent.  
Such a line of adsorpt ion  sites had previously been studied by Rosinberg 
et al. (1) in some special cases by a tour de f o r ce  of expansion resummations.  
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In this paper I solve the model in the general case by using a simpler 
method (2'3) and explicitly get the density profiles and the correlation 
functions. Thus, I am able to complete the work of Rosinberg et al. and to 
investigate a model of an ideally polarizable interface, which was 
introduced by Rosinberg and Blum, 14'5) when a line of adsorption sites is 
added on the interface. 

The potential I use to describe either the chemisorption or the strong 
physisorption is the sticky short-range Baxter potential. Then the potential 
Vad created at the position r by an adsorption site located at R is charac- 
terized by the Boltzmann factor exp(-flVad)= 1 + 2 6 ( r - R )  (with fl the 
inverse temperature): the positive parameter ~. measures the strength of the 
adsorption force, while the delta "function" takes into account the contact 
nature of this force. The Boltzmann factor associated with a lattice of 
adsorption sites located at R~ is exp(-flVaa)= 1 + 2 Z i 6 ( r - R i ) .  I model 
the conductive media by classical one-component plasmas (OCP): these 
are systems made up of mobile point charges embedded in a rigid 
background of opposite charge which ensures the global neutrality. This 
classical modeling is acceptable for the electrolytic fluid, but in principle 
the metal should be handled as a quantum mechanical OCP, which unfor- 
tunately is a far more intricate problem. In two dimensions the Coulombic 
potential between two particles of charges e separated by a distance r is 
- e  2 l n ( r / L )  (where L is an arbitrary length scale which fixes the origin of 
the potential), and models with various inhomogeneous backgrounds are 
exactly solvable for the special value of the dimensionless coupling constant 
F =  fie 2= 2. Since the fundamental property of Coulombic systems is the 
screening effect, which appears in two dimensions as well as in three dimen- 
sions, the behavior of electrolytes is very similar in both these dimensions. 
The method of solution and general results are given in Section 2. 

I now turn to a simple modeling of the polar i zed  metal-electrolyte 
interface (which is very complex for real systems). As long as the electrical 
potential drop A~b between the electrolyte (which occupies the half-space 
x > 0 )  and the electrode plate is not high enough to cause chemical 
reactions and a subsequent intense leakage current, the interface can be 
considered as an ideally polarizable one; in general, the two sides of it 
have opposite net surface charge densities ___ae. Since the equilibrium 
density profile of the surface layer of the plasma is determined by its net 
surface charge density ae, and since A~b is proportional to the dipolar 
moment of the net charge density, there is a relation between ae and &b. 
Consequently, one can choose either of them as the control parameter. In 
this paper I study two models for the electrode in greater detail. These 
models mainly differ in the treatment of the metal and will respectively be 
referred to as the charged hard wall and the impermeable membrane. 
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In the first model (Section 3), also called the "primitive electrode," 
only the electrolyte, which is modeled by an OCP, is treated at the 
microscopic level, whereas the metal is replaced by an insulating 
impenetrable wall. The only way of making a net surface charge appear is 
then to introduce an external, immobile, surface charge density - a e  on the 
wall, which appears as the control parameter. Because of the property of 
perfect screening, a polarization charge density ( p - P B )  e is built by the 
plasma so that S~ -~ [ p - - p B ] d x = a .  This model is the crudest one but it 
has the advantage of allowing simple calculations. 

In the second model (Section 4), the ideally polarizable interface is 
described by two one-component plasmas of different background densities 
which are separated by an impermeable membrane of zero width; this 
impermeable surface prevents the charges from crossing the interface while 
allowing electrical interactions between all particles, which leads to the 
building of a double layer of opposite polarization charges. This model is 
better than the previous one, from two points of view: first, it deals with 
the statistical mechanics o f  both sides, which are thus both treated at a 
microscopic level, and second, the conducting nature of both the metal and 
the electrolyte is taken into account. This is more realistic, since Rosinberg 
et aL (5) have shown that the interaction between the metal particles makes 
a sizeable contribution to the differential capacity O(ae)/OAO. Moreover, 
the control parameter in this model is the potential drop A~b; this is a nice 
feature, since in the experimental situation the potential drop A~b is the 
externally fixed variable, whereas the charge density ae is controlled by A~b 
and is not measured directly. However, a can be computed from other 
measurements such as either the curve of differential capacity versus d~b or 
the electrocapillarity curve (surface tension 7 versus A~b), since according to 
the Lippmann equation ~7/~AO = - ca .  

In Section 2, I introduce the method of solution for the one-com- 
ponent plasma at F =  2 and give the general results (densities, correlation 
functions, potential drop, free energy) for a line of adsorption sites embed- 
ded in a background which varies only in the perpendicular direction. 
Thus, I complete the work of Rosinberg et al. ~1) Then I investigate the 
density profiles, potential drop, contact theorem, and Lippmann equation 
for the primitive electrode (Section3) and for the ideally polarizable 
membrane (Section 4). The formalism which allows for dealing with the 
impermeable membrane is introduced in Section4.1, and it is used to 
establish a general demonstration of the Lippmann equation in the case of 
an impermeable membrane (Section 4.2). 
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2. M E T H O D  

2.1. General Formalism for the Two-Dimens iona l  OCP at [ ' = 2  

Consider N particles of charge e, the positions of which are alter- 
natively described by r~ = (xi, yi) or z~ = xi + iy~, and which interact both 
with one another and with some background of opposite charge which 
makes the system globally neutral. The Hamiltonian of the system is 

N 
Hu=eZv88+e2 2 V(r~) - e 2  ~ l n ( l z e - z j l / L )  (2.1) 

i - - 1  l <~i<j<~ N 

where e2V is the background-particle interaction energy, plus possibly a 
contribution from some external potential, and e2VBB is the background 
self-energy. For the inverse temperature /~ such that F=/~e2=2,  the 
Boltzmann factor reads (2'3) 

exp(--flHN) = C N exp(--fle2VBB) x Idet{exp[ - V(ri)] z~ ~}i,j= 1 ..-N] 2 

(2.2) 

where CN is a constant. Thus, for the one-component plasrna, the 
Boltzmann factor of the classical canonical partition function of N mobile 
charges may be written as the squared modulus of a Slater determinant; in 
other words, it has the same structure as the quantum probability density 
of a system made of independent N fermions which have orbitals of the 
type (x+  iy)" e x p [ -  V(x, y)]. 

If we straightaway go to the thermodynamic limit, then the problem of 
obtaining the correlation functions reduces to the calculation of the projec- 
tor P on the subspace g spanned by the entire functions of z = (x + iy) 
times exp[ -V(x ,  y)]. If we are able to produce an orthogonal basis 
{ gtj(r)} of the subspace g, the projector P is merely given by 

~Uj(rl) ~j(r2) (2.3) 

(where ~ is the complex conjugate of ~), and the truncated n-particle 
densities are 

p(r)= (rl P Ir) 

p(2)r(r~, r2) = - I  (r~l P I r : ) l  2 (2.4) 

P(n)r(rx ..... r n ) = (  - 1 ) n + l  2 (r,~lPIri2)'"(rJPtr~) 
(ill2 ... i~) 

where the summation runs over all cycles (i~i2.. .  in) built with {1, 2,..., n}. 
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2.2. BackgrounO inhomogeneous in One Direction 

The background potential eVe(r) is determined by both the 
background density pB(r) (through the Poisson equation x/V~ = 2npB) and 
by the boundary conditions, even after these boundaries have receded to 
infinity. For instance, the description of a plane surface between two one- 
component plasmas with uniform backgrounds involves a potential Vo 
which depends only on the direction orthogonal to the interface. In the 
following this direction will correspond to the x axis. 

Since Vo(x) is translationally invariant along the y axis, the functions 
exp[- - Vo(x) + k(x + iy)], with k e ~, are orthogonal because of the plane- 
wave factor exp(iky), and they form a basis of the subspace g, at least in 
the sense of distributions. Thus, the projector p~o) associated with Vo(x) is 

(r  1 IP (~ Ir2)= exp[ -Vo(Xl ) -  Vo(x2)~] 

dk t" 
x J ~ g(k) exp[k(xl + x2)] exp[ik(yl - Y2)] (2.5) 

with 

g(k)={ f  duexp[-2Vo(u)+ 2ku]} 1 (2.6) 

and we retrieve Alastuey and Lebowitz's results, ~6) for instance, 

dk 
p~~ = f ~ g(k) exp[ - 2 Vo(x ) + 2kx] (2.7) 

When the particles are confined to the half-space x > 0  by an 
impenetrable wall, the range of k must be restricted to k > 0, as can be seen 
by retrieving this case as the limit of the system where an impenetrable 
barrier separates two regions filled with the same one-component 
plasma.~3) 

The basis I have just exhibited will be useful for investigating the 
following problem. 

2.3. Line of Equidistant Adsorption Sites (Method of Solution) 

We are now able to study a system made of mobile charges which 
interact with a line of equidistant adsorption sites located along the y axis 
and with an electrical background which is inhomogeneous only in the 
x axis direction. The line of adsorption sites, with a distance between the 
nearest neighbors equal to co, creates a Baxter potential Va~ such that 
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exp(--flVad)=l+26(X)~ma(y--mco),  with m integer; the electrical 
potential V0 created by the background is assumed to depend only on x. 
Thus, e2V(r) = e2Vo(x) + Vaa. 

First we take advantage of the periodicity of Vad. For that purpose, it 
is convenient to write k =  27c(~ + n)/co (with { e [0, 1] and n integer) and to 
introduce 

q~ +,(z) = [g(~ + n)/co] 1/2 exp[2rt({ + n) z/co] 

where [g(~-k-n)/co] 1/2 is the normalization factor for the weight 
exp[-2Vo(x)]  [see (2.6)]: 

+ n ) ) = { f d x e x p [ - 2 V o ( x ) + 4 r c ( { + n ) x ] }  * ( 

The functions q)~+. are orthogonal and normalized for the weight 
exp(-2V0). Then the periodicity of Vad along the y axis ensures that, in 
this basis, the matrix of the scalar products with the weight exp[ -2V(r ) ]  
is brought to a block-diagonal form: 

f drC&+,(z)exp[-2V(r)] ~o:,+n,(z)=6(~-{')Ar (2.9) 

If we are able to diagonalize the symmetric matrix A~(n, n'), that is, to find 
the eigenvalues :~ of A~(n, n') and the corresponding orthogonal eigen- 
vectors (a~)) defined by 

~, A~(n, m) a~ ) = c~a(~ ~) 
m 

then the functions 

g*~,~ = e x p [ - V ( r ) ]  x I ~  a}~)qlr 
form an orthogonal basis of g and 

rl ~r'Q,~(r 1 ) ~#(r2)  
<rll P It2> = t_ d~ E 7 =(g) 

(2.10) 

Now we use the peculiar form of the Baxter potential which implies 
that the matrix A~ has a very simple structure: 

+ + ,)  . / - S  + n') 
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where #=2expE-2Vo(0)]/co and Vo(0) is the value of Vo(x) on the 
adsorption sites. A~ has only two eigenvalues, ~ =  1 + # ~ ,  g(~+n), 
associated with the eigenvector [a(~ u = ~ ] ,  and 0~ 2 -~-l, the eigen- 
vectors of which span the subspace orthogonal to (a(,1)). As a result, 

(rl  I P Ir2) = expE - V(rl) - V(r2)] 

• f~ -~ ..~m exp [2~'~+n)z~. 1 exp 127r(~ +m)  22] 

f /~g(~ + m)] (2.11) X g(~ ~- n) (~n,m -l~'-~---~J 

where G(~)=Z,  g(~+n). Moreover, one shows in the same way as for 
V= Vo(x) that, (3) when the particles are confined to the half-space x ~> 0, 
the summation is restricted to n ~>0. We can rewrite (r~l P Ir2) as 

I 1 U2 (r~l P lr2) = 1 +,h~(xi)~,~(y~-moo) 
m 

x 1 + 2~(x2) ~ 6(y2-  m'~o) 
m' 

x ( r  I IP*  Irz) (2.12) 

with 

(r l l  P* Ir2) = (rl[  p(O)lr2) 

- e x p [ -  V 0 ( X l ) -  V0(x2) ] 

x g(~+n)exp 2rc(~ n)z,  
o9 1 + pG(~) 

x ~ g(~ +m)exp I2n(~ +m) g2 ] (2.13) 
m 

where (rl[ p(O)Ir2) is the projector in the absence of adsorption sites, 
since, according to (2.5), (r~L p(O)lr2) itself can be written as 

( r l t  p (o ) I t2 )=  expl---Vo(Xl)-- V0(x2) ] 

x - - ~  g(~+n) exp 2rc(~+ _ +i2)  
~ n 

(2.14) 



688 Cornu 

2.4. Line of Equidistant Adsorption Sites (General Results) 

According to (2.12), the density p(r) can be expressed as 

P(r)=I I + 26(x) ~ 6(Y-mco)l P*(r) 

where p*(r) obviously is the density of the particles which are not 
adsorbed: 

i: P*(r)=P(~176 co 1 +#G(~) 

x exp - -  (2.15) 

The change 6p(r)= p*(r)-p(~ in the density of nonadsorbed particles 
which is due to the presence of the adsorption sites is a periodic function of 
y, with a period equal to co. Thus, we have solved a problem where the 
density depends on both x and y: the interface has a genuine two-dimen- 
sional feature. 

The occupation mean number nad of an adsorption site is na~= 
2p*(0, 0) and, according to (2.14) and (2.15), 

f~ ,uG(ff) (2.16) n,d = d~ 1 +/~G(~) 

As Rosinberg et al. (1) had pointed out in a special case, nad ~< 1 because of 
the Coulombic repulsion between charges of the same sign. Moreover, na~ 
is an increasing function of 2 (which measures the strength of the 
adsorption) and the saturation is reached in the limit of an infinitely strong 
adsorption (4 ~ + ~ ) .  In the simplest case of a line of adsorption sites 
embedded in a homogeneous background of density P0, Vo(x)=rcpo x2, 
p = k/co, and 

#g(~ + n) = 2po(z/x/-~ ) exp[ -z2(~ + n) 2 ] 

with r = (2z~/poco2)l/2; then #G(~) = 2po03((, z), where 03(~, z) is the Jacobi 
theta function defined by the series 

03(~'T)=(27/N~) E exp[ - ' c2(~+n)  2] 
n~Z 

and we retrieve the result of Rosinberg et al. 
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As for the "mean" surface polarization charge density 

efo 
a p reads 

fo oo 1 fY had ~p = ~(pO) + dx -- dy (~p(x, y) + -  (2.17) 
co co 

where ea(p ~ is the 
adsorption sites, ~(o) = ~ ~ dx[p(O)(x) _ p~], and t~p 

surface polarization charge density in the absence of 

dy 6p(x, y ) =  - e x p [ - 2 V o ( x ) ]  co 1 + #G(~) 

Because of 
r162 
x [ p ( x ) -  PB]. In 
potential drop 

x ~ e x p I 4 r c ( ~ + n ) X ] [ g ( ~ + n ) ] 2  (2.18) 
n 

the Poisson equation, the potential drop Ar  
is related to the density profile via Ar = 2roe ~+~ dx 

the presence of adsorption sites we will use a "mean" 

A(~ = 2~e dx x dy p(x, y)/co - PB 

Since the term 26(x) ~ m  ~ (Y  - -  mco) does not contribute, Ar may be written 
as 

where Ar (~ is the potential drop in the absence of adsorption sites. The 
calculation of d e -  Ar (~ is quite easy: after integrating upon y [see (2.18)], 
we interchange .[ d~ and ~ dx and we notice that 

f dx(x/co) exp[ -2Vo(x)]  exp[4g(~ + n) x/co] 

= 1/(47c)(0/t~){ [g(( + n)] -1} 

Then we obtain 

3 r  - Ar {~ = �89  + # G ( ~ ) ]  3o ~ (2.19) 
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On the other hand, Rosinberg et al. ~ have shown that the canonical 
partition function of this system can be formally expressed as a grand 
canonical partition function, where 2 plays the role of the fugacity of the 
adsorbed particles. Since the fugacity is defined up to a multiplicative con- 
stant, nad/O3=~(~/O#)(--fl A f ) ,  where A f  is the excess surface free energy 
density of the system compared to the system where there is no adsorption 
site. Since Af=O when 2 = 0 ,  we get from (2.16) 

- ~  A f  = -~ d~ ln[1 + #G(~)] (2.20) 

The negative sign of 3 f  means that the presence of the adsorption sites has 
a stabilizing effect. 

As for the correlation function between the adsorbed particles 

n(2)TE,,~, m2 ) = __22 = ad I J " l '  I(xx=O, Yl = m l  c~ IP*l x2=O, Y2 m 2 ( D ) [  2 

it has a very simple form: 

f] #G(~) 2 (2.21) n(aZ)r(ml, m2) = - dff exp[i2rc~(ml - m2)] 1 +----~ff) 

We easily verify that n(2)T(raa 2 . "ad ~,"'1, m l )  = --/'/ad " one site is occupied by at most 
one particle. Using (2.16) and (2.21), we readily see that the compressibility 
rule for the adsorbed particles is satisfied, (~) 

~?nad n naa (ml, m2) (2.22) 
m2 

Moreover, the structure of p(r) and p(Z)T(rl, r2) in terms of the projec- 
tor P implies that the first perfect screening sum rule is always satisfied: 

f dr2 p(2)T(rl, r2) = -p ( r l )  (2.23) 

A charge of the plasma is perfectly screened by the others, which is a 
fundamental property of a conductive medium. 

3. THE  P R I M I T I V E  E L E C T R O D E  

3.1. Mode l  

In a slab of plasma with a bulk density Po bounded by the two plates 
of a capacitor with opposite surface charge densities ( - ae at x = 0 and ae 
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at x = +L), the potential created by these plate s is equal to + 2~aex inside 
the capacitor and to constant values outside. Consequently, the potential in 
the vicinity of the plate located at x = 0 (the other one being sent away to 
infinity) is Vo(x ) = (gpox2+2gax)O(x) ,  where O(x) is the step function 
[0(x) = 0 for x < 0, O(x)= 1 for x > 0]. The plate, which is modeled by a 
hard wall with a surface charge density - a e ,  occupies the half-space x < 0 
so that the particles are confined to the region x ~> 0. Then/~ = 2/o) and, in 
terms ofgw defined in (2.8), we introduce gw by l~gw(() = 2Po g w ( ( -  a~o) (in 
this section the index w refers to the charged hard wall). Thus, 

~w(() = po e) dxexp[-27~poX2 +4~((x/e))]  

(3.1) 
2z exp( -z2 (2 )_  1 

1 + erf(z() ~,(() 

where z = [27C/poC02] 1/2 and erf(u) is the error function: 

erf(u) = ( 2 / ~ )  fo' dt e x p ( -  t 2) 

According to (2.13) and (2.14), the projector P* becomes 

( r l  I P* It2) = Po e x p [ -  ~po(X~ + x~) + i2~a(y 1 - Y2)] 

f -- o"..o + 1 4-o0 [2~(~ .~  n) Z1] 
x d~ ~.. gw(( + n) exp 

fro) n = 0 

2po 

1 + 2po t~w(~) 
gw(~ + rn)] 

(3.2) 

with Gw(() = Z,+--% gw(( + n). 

3.2.  D e n s i t y  P r o f i l e  

retrieve that, in the absence of According to (2.7), we immediately �9 _(7) 
adsorption sites, 

I .31 
-~e2,/,0]'/= 1 + erf(u) 
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Then the surface polarization charge density is effp, w(~ with a (~ = 
SJ -~ [p~)(x) - p o ]  dx = o. (7) Notice that, according to (2.14), p~)(x) can be 
written as 

o-oo + 1 + o o  

p~)(x)=poexp(-2rcpox2) f d~ ~ ~,w(~ +n)exp[4rc(~ +n)x/eo] 
--ffr 

,=o (3.4) 

In the presence of the adsorption sites on the charged hard wall, 
according to (2.15), the density of the nonadsorbed particles is 

f 
- -o 'co + 1 

pw(r)* = pf)(x) - Po exp ( -2~po  x2 ) d~ 
--cro~ 

x ~ ~w(~+n)exp 2 z 
n = O  

Since 

exp( ) 
1 + @o Cw(r 

(3.5) 

+ c o  2 

exp(47r~x/r ~, g,w(~ + n) exp(27rnz/m) <~ B expOzpo x2) 
n = O  

(where B is a constant) and since p~)(x)-Po goes to zero as a Gaussian 
, when x goes to infinity, (7) pw(r) tends to the bulk density Po as a Gaussian 

whether there are adsorption sites or not. 
Moreover, since the particles are confined to the half-space x >~ 0, 

fo +~ dx e x p [ - 2 V o ( x ) ]  exp[47z(~ + n) x/o)] = [gw(~ + n)] ! 

and, by using (2.t8) and (2.16), we find 

f ;  ~ dX l fo ~ dy 6pw(r )/co ] = --had, w/CO (3.6) 

so that, according to (2.17), 
=~(o) = o  (3.7) O'p,w Up,w 

This equality expresses the perfect screening of the external charge - o e  in 
two models, where o- is the control parameter. 

3.3. Potential  Drop and Contact  Theorem 

(a) In the absence of adsorption sites, J q ~  ~ is easily calculated by 
writing it as 

d~b(~ ~ = lim - ~e dx x 2 e "~ 
S ~ 0 + 
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with the result that (8) 

- ~ ~ + 2 n - - + l n  i - e r f  a (3.8) 
P0 

(Recall that - a e  is the surface charge density on the wall.) 
On the other hand, the thermodynamic pressure Pth is given by a 

scaling argument c9) which leads to flPth=Po(1--/~e2/4) (which reduces to 
f lP th  = Po/2 at fie 2 = 2); moreover, the electrostatic pressure due to a surface 
charge density - a e  is p~ = (2rcae)2/(4rc), and, according to (3.3), 

p(w~ = O) = Po ln{2/[1 -- erf( a( 2z/po)~/2) ] } 

Thus, the relation (3.8) can be viewed as a contact theorem, 

~.~(o~ (3.9) P t h  = f l  - I P  (wO)(x = O) - p~ - poezJ~, w 

This equation expresses the balance (~~ of a slab of electrolyte submitted to 
the thermodynamic pressure, the kinetic pressure on the wall, the surface 
electrostatic pressure, and the electrostatic pressure due to the charged 
background. It can also be derived from the first hierarchy equation/H) 

(b) We now study the change in Ark w originating from the presence 
of the adsorption sites. In the case of the charged hard wall 

+co  

~G(~) = '~Po Y, ~w(~- ~o~ + n) 
n = O  

and, according to (2.19), the presence of the adsorption sites is responsible 
for the extra potential drop 

I 1 2P~ gw(--ac~ ] (3.10) A(bw_AO(wO~=l n e  1 + 2po Z2-_-% ~ ( - c r o )  +n)  

The electrode potential ~bw(0)-~bw(+oo) increases when there are 
adsorption sites. 

In order to interpret Eq. (3.10) as a contact theorem, we come back to 
the calculation of A~b- A~b (~ which led to (2.19). Using the fact that 

in order to rewrite 

d 
2~ exp(-r2ff 2) = ~  [1 + erf(r~)] 

x/rr 

d 1 4~r 
_d~([gw(~ +n) ] 1)=O)po +p__~(~ +n_~e))[gw(~ +n)] -x  

822/54/3-4-9 
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we finally get 

fle[AOw - Aqt(w ~ = - d~ 1 + I~Gw(~) [gw(~ + n)] 2 

Po co-----54zr } + ~ (~ + n - ~rco) gw(~ + n) 

Then we recognize that, according to (2.18), the first term of the rhs is 
merely (1/po){[~)dyp*(O,y)/co]-p(~ and that, according to 
(2.14) and (2.15), when - 2 V o ( x ) = - 2 r t p o x 2 - 4 r u r x ,  the second term is 
- (2/coPo)(~P*/~?x)(x, 0)l~=o. We obtain 

fle[ Aq)w - d~ ~ 

} 1 dY[p*(O'y)-P(~ co Ox (x, 0)]~=o (3.11) 
Po 

This gives the interpretation of the expression of e[AOw-dO~ ~] given by 
(3.10), and the contact theorem now reads 

-~ dy p*(O, y)-~--~-~x (X, O)l~=o - p~-epoA(~(3.12) 

This modified contact theorem was suggested by Blum et al. (~2) 

3.4. Surface Free Energy and Lippmann Equation 

Since our formalism straightaway deals with the thermodynamic limit, 
we cannot compute directly the surface free energy of a system (the subtle 
interplay between the background and particle contributions to electro- 
static energies, which ensures the extensitivity of the free energy, can be 
exhibited only if one starts with a finite system). 

(a) First we recall the surface free energy density f~ )  of a charged 
hard wall, which was first derived through statistical mechanics 
calculations by Smith. (8) ~(o) defined through an increase of the surface Jw ' 
charge while keeping the area of the interface and the background density 
constant, is given at fie2= 2 by (1~ 

e2I; 2~0 -3 (po~l/2~r(2n/po) 1/2 1--f(t)l 
f ~ = a # o - ~  +--~- ~oo + \2rcj ~o dtln 2 r (3.13) 

where ~re is the net surface charge density of the fluid and #o is the bulk 
chemical potential. On the other hand, from the thermodynamic point of 



2D Models for Electrode wi th  Adsorption Sites 695 

view, this variation of free energy which occurs when one raises the surface 
charge density of the wall from 0 to - c a  while increasing the number of 
mobile charges in order to keep the system globally neutral is the sum of 
the following two terms: a times the bulk free energy per mobile particle, 
plus 

o'(-ed~r')[fb(w~ - ~b(~ (+  ~ ) 3  

which is the sum of the works needed to carry the external charge - e&r '  
from infinity to the wall across the potential drop created by the plasma. 
Using the expression (3.8) for cb (~ when the external surface charge density r W, Cr' 

on the wall is -(r 'e,  we retrieve (3.13). 

(b) In the presence of the adsorption sites, according to (2.16) and 
(2.21), the occupation mean number is 

f - ~ o + l  2poGw(ff) (3.14) 
na~ = _~,~ d~ I + ,~po~w(~) 

and the correlation function between the adsorbed particles is 

_ -o~+l l+2po(~w(~)):P~ 2 n ~ ) r ( m l ' m 2 ) =  f-,~o~ d~ exp[i2rc(~ +a~  

(3.15) 

An integration per parts shows that n~)T(ml-rn2)  decreases as 
1 / ( m a - m 2 )  2 when m ~ - m  2 goes to infinity as it is expected in the vicinity 
of an insulating wall. (7) According to (2.20), the total surface free energy 
density is 

e 2 

f w = f } ~ 1 7 6  ~176 + ' d~ ln[1 + 2po(~w(()3 (3.16) 
a c o  O )  

(c) Let us now turn to the derivation of the Lippmann equation. For 
that purpose I introduce F,, the surface free energy; A, the "surface" of the 
interface; O, the "volume" of the system; and Q = Aae, the polarization 
charge. The interpretation of (3.13) implies that 

Of~)/Ocr ] p o - e( OF,/~Q ) l n,a,o o = kt o + eAO (~ 

Moreover, using (2.19) and (3.16), we notice that g(df)/Ocrl,o.po= 
e [ A O -  A~b(~ Therefore f ~ )  and fw satisfy the same equation, 

Of w ~,,;o ~o. = ~o + edO (3.17) 
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On the other hand, the surface tension 7 = (OF/~A)]Q is related to f =  F/A 
via 

7= f -cr(Of/&r)jpo (3.18) 

7 is the Legendre transform of f with respect to o and, according to (3.17), 
in the case of the charged hard wall the conjugate quantities are a and 
#(~,po)+eAfb. This implies the following relation, known in electro- 
chemistry as the Lippmann equation(l~ 

07w 
3A~b p0 = - e o  (3.19) 

By means of (3.19), the experimental electrocapillarity curve (7 versus A~b) 
allows for the calculation of a, where ae is the total polarization charge 
density, which includes the possibly adsorbed charge density. 

4. THE IDEALLY POLARIZABLE INTERFACE 

4.1. Description of a Polarized Impermeable Membrane  

Dealing with a polarized impermeable interface is as easy as treating a 
permeable membrane if one notices that the grand canonical partition 
function of an impermeable surface •imp, when the particles on each side of 
it have different fugacities, may be viewed as the canonical partition 
function of a permeable surface Qp . . . .  where the particles are submitted to 
an external potential step when they cross the membrane, this external 
potential step being related to the polarization charge density. (5'6) On the 
other hand, the equivalence between the grand canonical ensemble and the 
canonical ensemble ensures that we can calculate the density and the trun- 
cated n-body densities for the impermeable membrane directly from the 
grand canonical partition function of the impermeable membrane 
'-~irnp = Qperm, The point is that Qperm is far more easily tractable than Qimp. 

We now come to the demonstration of the relations between the 
descriptions of these two membranes. Let us consider a system Z built with 
two OCPs ~a and Z~ separated by an impermeable membrane. If the 
membrane carries adsorption sites which exchange particles with Za, the 
following argument will remain unchanged. The background of Z a (Zb) has 
a charge --NaBe (-N~e). Since only globally neutral systems contribute to 
the thermodynamic limit, (13) we will at once deal with systems Z(n) where 
the number of mobile particles in Za (Zb) is N~+n (N~-n). Then the 
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grand canonical partition function of the system where the fugacity of the 
particles in Si is ze (i = a, b) reduces to 

'-~imp( Za' Zb)=ZSZb Nbg 2 (Za/Zb) n Qimp(/'/) (4.1) 
n=-A~ s 

where Qimp(t'/) is the canonical partition function of S(n). I now introduce 
)~i(r), the characteristic function of the region occupied by Xi. Since the 
Hamiltonian H(Z') of the system is invariant under the permutations of the 
mobile particles, one readily shows that 

'-~irlap (Z a, Zb) 
1 

f dr1-., drN ]-I [zaz~(ri) + ZbZb(re)] exp[--/~g(-r)] 
(iV~ + N~)t i 

= Qw,m(Va, V~) (4.2) 

where Qperm(Va, Vb) is the canonical partition function of the system when 
the membrane is permeable and the particles are submitted to an external 
potential eVg= -(fie) -~ In zg in the area occupied by Z'~. Therefore, in the 
thermodynamic limit, if we denote 

0.erm = Qperm/(ZSZb ]Vb~) 

then 

lnE O.p,m(z Jzb ) ] = n* ln(za/zb ) + In Qimp(n*) 

where n* is a function of (za/zb) such that 

(4.3) 

~3 [ln(~)perm)] = 0 (4.4) 
c3n* Za/Zb 

4.2. The Lippmann Equation 

Let F be the free energy of the system with an interface. Let F,~(Fb) be 
the free energy of region a (b) bounded by an uncharged hard wall without 
any external potential. Define the surface free energy density f as 
f =  ( F - F a -  Fb)/A, where A is the "area" of the interface. According to 
(4.3) and (4.4), the surface free energy densitiesfper m andfimp are Legendre 
transforms Of each other with respect to a, the other control parameters 
being kept constant, 

fpe~ ~ =fimp(O'a)--0"a'~ff a =~imp (4.5) 
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with 

afimpaaa zo/zb,po.p~ = [/-1 In Zazb (4.6) 

where ~ae is the polarization surface charge density in region a and Yimp lS 
the surface tension of the impermeable membrane. 

Moreover, the equilibrium criterion for the electrochemical potential is 
satisfied in the case of the permeable membrane with an external potential 
step (this will be verified on the exact model in Section 4.3): 

// X ln(z~/zb)= - e2 (V~  - Vb)=[.la--ktb +e((~a--(~t, ) (4.7) 

where #i(~, Pi) is the chemical potential of a particle in the bulk with 
density pi, and ~b~ is the electrical potential in the bulk in region i. This 
macroscopic equality is satisfied whether there are adsorption sites or not 
because these create only a short-range potential. 

Consequently, according to (4.6) and (4.7), o-~ and/~a --/~b + e(~b a -- ~bb) 
are conjugate variables for the Legendre transformation, so that, according 
to (4.5), 

OTimp Pa,Pb ~A~b = - e ~  (4.8) 

The Lippmann equation is valid for the impermeable membrane as for the 
charged hard wall and it is not altered by the presence of the adsorption 
sites. 

4.3. Density Profile and Potential Drop 

In this section we consider a permeable membrane located at x = 0 
which separates two OCPs of background densities Pa for x > 0 and Pb for 
x < 0. The extra external potential is eVa for x > 0 and e V b for x < 0. The 
related fugacities are za = exp(-/ /eZVa)= exp(-2Va)  and zb = exp(-2Vb). 
Then 

expE - 2 Vo(x)] = O ( - x )  z b exp( - 2zrpbx 2) + O(x) za exp( -2 zcpax  2) (4.9) 

The adsorption sites exchange mobile particles with the fluid in the half- 
space x>~0, so that # = (2/co) exp(-2Va).  

(a) When there is no adsorption site we straightaway retrieve from 
(2.7) the following formulas (5) (with i =  a if x > 0 and i =  b if x < 0), 

f 
+o~dk 

p~~ = zi exp( - 2~pix  2) ~ ~ gM(k)  exp(2kx) (4.10) 



2D Models for Electrode with Adsorption Sites 699 

where the index M refers to the impermeable menbrane and 

with 

1 
gM(k) = (4.11) 

h~(k) + hb(k) 

f0 ~~176 
ha(k ) = dx exp[ - 2 V0(x) + 2kx] 

fo 
hb(k) = dx exp[ - 2  Vo(x) + 2kx] 

--oO 
As a matter of fact, pl~ only depends on Pa, Pb, and ZJZb= 
exp[--fie2( V a -  Vb)]. The global neutrality of the double layer, which is an 
ingredient of the formalism developed to tackle with the impermeable 
membrane, is easily verified: the surface polarization charge density 
eaa = e S~- oo [p~O)(x ) _ p~] dx is opposite to ea b = e S ~ ~ [p~~ - Pb] dx. 

We now turn to the potential drop A~b = ~ba(+ ~ ) - ~ b b ( - - ~ )  across 
the interface in order to interpret e(Va-Vb) .  As in Section3.3, A~b is 
calculated by using a convergence factor with the result that 
ZJZb= (pJpb)l/2exp(fleAq~) at fie2=2. (5) Since, according to a scaling 
argument, the chemical potential #~(fl, p~) satisfies 

]2a(Pa, fl ) - flb(Pb, fl) = f ' [ 1  - -  (fie2/4)] ln(p J p b  ) 
we get 

-e2(Va - Vb) = I~a - #b + e(O~ -- ~b) (4.12) 

Thus, -e2(Va - Vb) proves to be the difference between the electro- 
chemical potentials on each side, and Eq. (4.12) is interpreted as an 
equilibrium relation for the permeable membrane with an external poten- 
tial step equal to e(Va-Vb) :  at equilibrium, the total free energy is 
minimum and the work needed to make a particle cross the permeable 
membrane from side b to side a, -e2(Va - Vb), is compensated by the 
variation of free energy when a particle is taken out of region a, - / ~ ,  
carried across the inner potential drop (b b -  Oa, e(~b--q)a), and finally is 
embedded into region b, +/ t  b. Moreover, if V a = Vb (Za/Zb = 1), the density 
is continuous on the interface, p~~176 while, from a 
macroscopic point of view, the electrochemical potential #i(Pl)+ e~bi also 
becomes continuous (which actually is the equilibrium criterion for a per- 
meable membrane) and the free energy densities fimp and fperm coincide: as 
expected, by letting V~-  V b vanish, one recovers the case where the mobile 
particles are free to cross the interface. 

Since the potential drop A~b differs from - e ( V a - V b )  by a known 
constant at fie2= 2, it does appear as the control parameter of the model 
and the density can be written as 
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with 

p(~~ = ~ e x p ( -  2Upa x2) 

f 
+oodk 

• 
- ~  2~ 

= e x p (  

f + ~ d k  
x _ ~ 2re 

exp(2kx) 

exp(-f leA~) H b ( - k )  + H~(k) 

- ,SeA(~) exp( -- 2rcp b x 2) 

exp(2kx) 

exp(-fleA()) Hb( - k ) -t- H . (  k ) 
(4.13) 

H,(k) = -5-- \(2,Wi) 

[-I have used that e f f ( - u ) = - e f t ( u )  in order to define h , (k )=  
( z # / ~ f ~ )  H , ( k  ) and hb(k ) = (Zb/~bb ) H b ( - k  ). ] 

(b) In the presence o f  adsorption sites, the potential drop is given by 
the general formula (2.19). Since in the case of the membrane 
GM(~) = Z , ,  z gu(~ + n), GM(~) is a periodic function of ~ with a period 
equal to 1 and 

AO M = A(/OM > =- AO (4.15) 

so that the equilibrium criterion (4.12) is still satisfied. The existence of the 
adsorption sites does not modify the potential drop across the impermeable 
surface in the same way as it does not change the polarization charge in the 
case of the charged hard wall. This is not surprising, since A~b is the control 
parameter in the formalism which deals with the impermeable membrane. 

Then we write the projector in terms of A~b. For that purpose let us 
introduce g u  defined in terms of g u  [see (2.8)] by ~g/(~)----)~pafi, u(~) 
[with kt = (2/co) exp( -2V~)] .  Then 

gM(~) = []~a(() + (Pa/Pb) 1/2 exp(-fleA(~) "~b(--~)] -1 (4.16) 

where ]~, is defined in (3.1) with z i = (27:/P~ co2)1/2. Then, according to (2.13) 
and (2.14), 

p~ exp[ -~p , , (x~  + x~)] D(rl,  r2) 

if x l > 0 ,  x 2 > 0  

Pb exp(--fleA(~) exp[ --upb(x~ + x~)] D(rt ,  r2) 

(rl[ P *  [r2) = if X l<0 ,  x 2 < 0  (4.17) 

(Pa/Pb ) 1/4 [P ~Pb exp( -- fleAr ) ] ~/2 

• exp( - - u p , x  2 -- upbx  2) D(rl,  r2) 

if x l > 0 ,  x 2 < 0  



2D Models for Electrode wi th  Adsorption Sites 701 

with 

D(r l , r2)= d~ ~ ~M(~+n)exp 
n =  - - ~  m =  o o  

x 6.,,. 1 +)op~ 

Similarly, the density of the nonadsorbed particles is given by 

fp~ exp(-2~pax;) D(r) if x >  0 
p*(r) 

poexp(--BeAO)exp(--2~pbx2)D(r) if x<O 
(4.18) 

where 

2p, 
D(r) = D(~ - Jo 

1 + 2p.O~(~) 

xexp (~-~ - f )  .+~_~ gM(~+n)exp (~--~)  2 

with 

1 + G o  

D(~ = fo d~ gM(~ + n) exp[4rc(( + n) x/co] 

As for the polarization charge density eaa in the half-space x ~> O, in 
the case of the membrane, 

fo ~176 dx exp[ - 2 Vo(x)] exp[4rc(( + n) x/co] = ha(2rc(( + n)/co) 

is different from [-gM(( + n)]-1 SO that, according to (2.16)-(2.18), --had~co 
is now different from SJ -~ dx[~oOdyfp(r)/o)] and aaCa(, ~ (This is 
analogous to the fact that Ar r162  (~ for the charged hard wall.) However, 
the interface is globally neutral: the polarization charge density eab in the 
half-space x < 0, 

[fo ] ab = "b + dx dy 6p(x, y)/co 
- -  o 0  

satisfies o- b = -aa ,  since, using (2.18) and 

f o dx exp[-2Vo(x)]  exp[4r~(~ + n) x/co] = hb(2g(~ + n)/co) 
oO 
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we obtain O'a-{"O'b=O'(aO)"[-o'(O)=0. Moreover ,  by using (4.16), we notice 
that 

[#gM(# + n)]  2 hb(~ + n)/# = aE#aM(#)]/a(BeAO)I~ 
n 

and we find 

a _ a ( o ) = _ [ a b _ a ( b o ) ]  = 0 {If~ } (?(fleAO----~) d~ l n [ l  + 2p.C(~)] ;~ (4.19) 

Actually, this equality can be deduced from the general formalism of the 
impermeable membrane,  as will be shown in Section 4.5. 

4.4. Contac t  T h e o r e m  

In the absence of the adsorpt ion sites, the calculations for A~b which 
lead to (4.12) also imply that 

Pth-- pbth= fl l[p~~ p(b~ ] 

-- e{pa [~b(~ + oo ) -- ~b(~ - pb[~b(~ o0) -- ~b(~ } (4.20) 

The step of thermodynamic  pressure at the interface is equal to the step of 
kinetic pressure plus an electrostatic contr ibut ion from the background.  (s) 

In the presence of the adsorpt ion sites, we show, as in Section 3.3, 
that, if we write ~b = ~bM- ~b (~ 

flepa[ 6~( + co ) - 6~b(0)] 

= - co I + # G M ( ~ )  [ g g ( ~ + n ) ]  2 Za+ ( ~ + n ) h a ( ~ + n )  

flepb [6~(0) -- 6 ~ ( -  oo )] 

= _  ld~ # [gM(~+n)] z  - - Z b + - - ( ~ + n ) h b ( ~ + n  ) 
09 1 + #GM(()  r 

Since h a ( ( + n ) + h b ( ( + n ) = [ g g ( ~ + n ) ]  -1, we get a result similar to 
(3.11), 

fie{pa[6r + oo ) - 6~b(0) ] + pb [6~b(0) - 6~b( - oo )] } 

= I f o  dy [p*(O, y ) -  p(~~ 

fo~ x=O 
1 dy [p*(O, y ) -  p(b~ 2 ~p* (x, O) (4.21) 

(D (2) ~X 
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so that the contact theorem now reads 

{fo ;: -1 1 ~ 1 d y p . ( O , y ) _ 2 _ _ O p * ( x ,  
p th _ P th = b ~ dy p * ( O, y ) -- -~ o~ -~x 

- e{p~[~b( + ~ )  - ~b(0) ] - pb[-~b(- oo) -- ~b(0)] } (4.22) 

Thus, the contact theorem is altered by the presence of adsorption sites in 
the same way for the impermeable membrane as for the charged hard wall. 

4.5. S u r f a c e  Free Energy 

(a) First we recall the expression for the surface free energy density 
in the absence of adsorption sites derived by Rosinberg and Blum, (5) who 
started with a f inite system. With our notations [see (4.14)], 

I "a/k! ] ~ dkln 1+ 
--PJ imp - -  - ~  2zc exp(-fleAqk) H b ( - k ) d  

This formula is not surprising, since, according to (2.2) and Section 2.2, the 
surface density f(~ involves the difference between 

dk In dx e x p [ - 2 V o ( x )  + 2kx]  = dk ln[h,(k)  + hb(k)] 
- -  o o  - - o : 3  

and the contribution S ~ ~ 1 7 6 1 7 6  from the 
reference states defined in Section 4.2. 

(b) Second, we formally study the excess surface free energy due to 
the presence of the adsorption sites. When there are adsorption sites, the 
surface free energy density f can be viewed as the sum of two contributions: 
f~mp =f !o )  + Afimp, with Afimp defined at constant potential drop: J i m p  - -  

flAfimp - ln[Qimp(n,  2 co) co) = )/Qimp(n )] /A 

where Qimp(n, ).) is the canonical partition function of the impermeable 
membrane in the presence of the adsorption sites when there is a total 
excess charge ne in the region x > 0 ,  and O (~ t -  (~ is the canonical par- 

~;~ i m p ' ,  '~  ! 

tition function in the absence of the adsorption sites when the excess charge 
is n(O)e; n and n (~ are functions of the same &b, i.e., of the same za/z b. We 
define Afpe,m(Z,/Zb, 2) in the same way as Afimp by 

/  fporm = " --ln[Qpe~m(Za/Zb, 2 )/Qperm(ZJZb) ] /A 
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Since the argument which leads to (4.3) is still valid in the presence of the 
adsorption sites, we can use it for Qimp and r~(0) and we find, as in ~imp 
Section 4.2, that the variation of the surface tension of the impermeable 
membrane due to the presence of the adsorption sites is 

A~)imp = Afperm(ZJ~, ~*) = Afimp(A~, ~) -- (O'a -- o'(O))(/[ta - -  ]gb ~- eA(~)  (4.24) 

with the Lippmann equation 

a (ZJfperm) ~ (4.25) e ( a ~  ~~ = 0(z1~) 

Moreover, according to the study by Rosinberg etal., ~) the occupation 
mean number of an adsorption site is 

n~ d = (Dfl(OAfimp/O in ~)1. 

= tOfl(c3fimp(n, ; ) /~ In 2)J~ 

and, since fimp(n, 2) and fp, rm(A~b, 2) are Legendre transforms of each other 
with respect to the conjugate variables n and # + eA(~, we get 

g/ad 
(D 

0 
8 In 2 EflAfperm(Ac~, 2 ) I ~  (4.26) 

Thus, the change in the nonadsorbed excess charge density is 

ehaa-%r _ ( o ) _ ~ 2 ] =  0A~b0 (Afp,rm) +)~fle~---~(Afp~r,~) Ar (4.27) 

Now we come back to our model at fie2= 2. The general formula 
(2.20) was derived when keeping the control parameters of the model, 
but 2, constant, and Af vanishes when 2 goes to zero. Thus, we get the 
identification 

__/~Z~fperm (Za,)v)  1 f~ = - -  d~ ln[1 + 2paGM(~)] (4.28) 
\ z  b co 

and using (4.25), we recover (4.19). The occupation mean number is [see 
(4.26) and (4.28)] 

o' 2paGM(~) (4.29) 

as was expected from (2.16) and from the equivalence between the 
canonical partition function Qimp and the grand canonical partition 
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function ~-'~irnp ~--" Qperm for the calculation of the density and correlation 
functions. In the same way, according to (2.21), the correlation function 
between the adsorbed particles is 

- -  1 " ~ , ~ p a ~ J M ( ~ )  2 
1 2p,GM(~) (4.30) n~)r(ml' m2)= fo d~exp[iZz~(ml-m2)] 

(~ +oo Since M ( ~)= ~  . . . .  CM(~+n) and all its derivatives are periodic 
functions of ~ with a period equal to 1, n~)r(ml, m2) decreases faster than 
any power of (ml--m2) -1 when m I - m 2  goes to infinity, as expected near 
the boundary between two plasmas. (~5) 

Finally we get 

f i m p  ~ J i m p  - -  d~" ln[1 + 2pa(~M(#)] + (aa - a~,~ - #b + eA(~) 

(4.31) 

with a , -~r~  ~ given by (4.19). 

5. C O N C L U S I O N  

A salient feature of this paper is the description of an impermeable 
membrane by means of a permeable one with an external potential step on 
the surface; this description is very convenient for the statistical mechanics 
approach. Moreover, the two-dimensional OCP at F = 2  in an inhomo- 
geneous background which varies in only one direction is exactly solvable. 
Thus, one has at hand a solvable model for an ideally polarizable electrode, 
a model which, according to Rosinberg and Blum's survey, (5) accounts for 
the main features of experimental curves. 

Using a new method, I have exactly solved this two-dimensional 
model at F = 2  when there are adsorption sites on the interface. I have 
checked that the screening effect, which is the fundamental property of 
Coulombic fluids, is unaffected by the presence of the adsorption sites. 

For the first time, using the present model, the modified contact 
theorem suggested by Blum et aL ~12) has been verified: the kinetic pressure 
on the interface is increased by a contribution from the gradient of the 
mobile charge density at an adsorption site. 

Finally, I have shown quite generally that the Lippmann equation is 
valid for the impermeable membrane whether there are adsorption sites or 
not: it is derived from the Euler-Lagrange relation which connects the 
descriptions of the permeable membrane and the impermeable one, and 
from the equilibrium criterion for the electrochemical potential. 
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